feat: initial implementation of data ingestion and streaming API
This commit is contained in:
74
src/llm/main.py
Normal file
74
src/llm/main.py
Normal file
@@ -0,0 +1,74 @@
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.responses import StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
import requests
|
||||
import json
|
||||
|
||||
from langchain_community.vectorstores import Chroma
|
||||
from langchain_community.embeddings import HuggingFaceEmbeddings
|
||||
|
||||
# --- Configuration (Same as before) ---
|
||||
DB_PATH = "dune_db"
|
||||
EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2"
|
||||
OLLAMA_API_URL = "http://localhost:11434/api/generate"
|
||||
OLLAMA_MODEL = "llama3:8b"
|
||||
PROMPT_TEMPLATE = """
|
||||
You are a helpful AI assistant and an expert on the Dune book series.
|
||||
Use the following pieces of context from the books to answer the user's question.
|
||||
If you don't know the answer from the context provided, just say that you don't know, don't try to make up an answer.
|
||||
|
||||
Context:
|
||||
{context}
|
||||
|
||||
Question:
|
||||
{question}
|
||||
|
||||
Answer:
|
||||
"""
|
||||
|
||||
# --- Pydantic Models (Same as before) ---
|
||||
class AskRequest(BaseModel):
|
||||
question: str
|
||||
|
||||
# --- Initialize FastAPI and load resources (Same as before) ---
|
||||
app = FastAPI()
|
||||
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={'trust_remote_code': True})
|
||||
vector_store = Chroma(persist_directory=DB_PATH, embedding_function=embeddings)
|
||||
retriever = vector_store.as_retriever(search_kwargs={"k": 5})
|
||||
|
||||
# --- NEW: The Streaming Endpoint ---
|
||||
@app.post("/ask-stream")
|
||||
async def ask_question_stream(request: AskRequest):
|
||||
print(f"🔍 Streaming request for: {request.question}")
|
||||
|
||||
# 1. Retrieve context (this part is still blocking)
|
||||
retrieved_docs = retriever.invoke(request.question)
|
||||
context = "\n\n---\n\n".join([doc.page_content for doc in retrieved_docs])
|
||||
prompt = PROMPT_TEMPLATE.format(context=context, question=request.question)
|
||||
|
||||
# 2. Define the generator for the streaming response
|
||||
async def stream_generator():
|
||||
try:
|
||||
ollama_payload = {
|
||||
"model": OLLAMA_MODEL,
|
||||
"prompt": prompt,
|
||||
"stream": True # <-- The key change to enable streaming from Ollama
|
||||
}
|
||||
# Use stream=True to get a streaming response from requests
|
||||
with requests.post(OLLAMA_API_URL, json=ollama_payload, stream=True) as response:
|
||||
response.raise_for_status()
|
||||
# Ollama streams JSON objects separated by newlines
|
||||
for line in response.iter_lines():
|
||||
if line:
|
||||
chunk = json.loads(line)
|
||||
# Yield the actual text part of the token
|
||||
yield chunk.get("response", "")
|
||||
except requests.RequestException as e:
|
||||
print(f"❌ Error communicating with Ollama: {e}")
|
||||
yield "Error: Could not connect to the language model."
|
||||
except Exception as e:
|
||||
print(f"❌ An unexpected error occurred: {e}")
|
||||
yield "Error: An unexpected error occurred while generating the answer."
|
||||
|
||||
# 3. Return the generator wrapped in a StreamingResponse
|
||||
return StreamingResponse(stream_generator(), media_type="text/plain")
|
||||
Reference in New Issue
Block a user